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Abstract. Mathematical models of HIV-1 infection can help interpret drug
treatment experiments and improve our understanding of the interplay be-
tween HIV-1 and the immune system. We develop and analyze an age-

structured model of HIV-1 infection that allows for variations in the death
rate of productively infected T cells and the production rate of viral particles

as a function of the length of time a T cell has been infected. We show that
this model is a generalization of the standard differential equation and of delay
models previously used to describe HIV-1 infection, and provides a means for

exploring fundamental issues of viral production and death. We show that
the model has uninfected and infected steady states, linked by a transcritical

bifurcation. We perform a local stability analysis of the nontrivial equilibrium
solution and provide a general stability condition for models with age struc-
ture. We then use numerical methods to study solutions of our model focusing

on the analysis of primary HIV infection. We show that the time to reach
peak viral levels in the blood depends not only on initial conditions but also
on the way in which viral production ramps up. If viral production ramps

up slowly, we find that the time to peak viral load is delayed compared to
results obtained using the standard (constant viral production) model of HIV

infection. We find that data on viral load changing over time is insufficient
to identify the functions specifying the dependence of the viral production
rate or infected cell death rate on infected cell age. These functions must be

determined through new quantitative experiments.
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1. Introduction. We develop an age-structured model for HIV-1 infection dy-
namics that tracks the length of time a T cell has been infected. Age-structured
models have been widely used to study the epidemiology of infectious diseases, such
as HIV [1], hepatitis C [2] and tuberculosis [3, 4]. These works explore issues of
global stability analyses [1, 2] and numerical analyses [4] with the focus on the
analysis. The model by Castillo-Chavez and Feng did explore the host dynamics
of TB [3]. However, age-structured models have not been widely considered for
within-host dynamics for HIV; the only case to date dealing with the context of
treatment strategies is [5]. We pursue a different application, were we focus on
the analysis of the age-structured equations via the Jacobian matrix as well as
focus on the application of these models to the study of HIV patient data. The
work by Zheng et al. [4] utilizes the Jacobian matrix to calculate the characteristic
equation and we follow a similar line in our analysis. Age-structure allows more
realistic representations of the biology of HIV-1 infection. In particular, it allows
us to account for the fact that the production of new virus particles (virions) by
an infected cell does not occur at a constant rate, but rather ramps up as viral
proteins and unspliced viral RNA accumulate within the cytoplasm of an infected
cell. Our model also allows the rate of death of an infected cell to vary according
to the time a cell has been infected. Special cases of this model are the standard
ordinary differential equation model of HIV-infection [6, 7, 8], delay models that
account for the fact that production of new HIV virions from an infected cell cannot
occur instantaneously after infection [9, 10, 11, 12, 13], and models that assume
cell death due to HIV infection may be delayed [14]. The age-structured model
developed here has now been used to examine optimal viral production rates [15]
and optimal viral fitness [16] under certain simplifying assumptions.

2. Age-structured model of HIV-1 infection. Our model considers a popu-
lation of uninfected target cells, T (t), infected T cells structured by the age, a, of
their infection, T ⋆(t, a), and virus, V (t). The equations defining the model are

dT

dt
= s − dT (t) − kV (t)T (t),

∂T ⋆

∂t
+

∂T ⋆

∂a

da

dt
= −δ(a)T ⋆(a, t),

dV

dt
=

∫

∞

0

P (a)T ⋆(a, t)da − cV (t).

(1)

In this model target cells, T , are assumed to be produced at a constant rate, s, and
die at a fixed rate, d, per cell. The infection of target cells is assumed to occur via
the law of mass-action as a second-order kinetic process between uninfected cells,
T , and virus particles, V , with an interaction-infection rate constant, k. The virion
production rate, P (a), and the death rate, δ(a), of infected cells of age a, T ⋆(a, t),
are assumed to be functions of the age of cellular infection, a. Virions, V , produced
by infected cells are assumed to be cleared at a fixed rate per virion, c. We also
assume da

dt
= 1; that is, that the time unit for age of infection is the same as that

for clock time.

Since this model contains a first-order hyperbolic equation, we need to introduce
the appropriate boundary and initial conditions. First, infected T cells of age zero
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are created by infection; that is,

T ⋆(0, t) = kV (t)T (t). (2)

Because infected cells of any age class have units of 1/age or equivalently 1/time,
both the left and right-hand sides of (2) have the same units, 1/time.

To study primary infection we impose the initial conditions T (0) = T0, T ⋆(a, 0) =
0 and V (0) = V0, where T0 is the level of target cells prior to infection and V0 is the
initial virus concentration. If we wish to study the effects of drug or monoclonal
antibody therapy on patients with established infections, we assume the patients are
initially at steady state and choose T (0) = Tss, T ⋆(a, 0) = f(a), and V (0) = Vss,
where Tss and Vss are the steady state levels of target cells and virus, respectively,
and f(a) is the steady state distribution of infected T cells of different ages. Under
these conditions, time t no longer represents the time since the infection of the host,
but instead represents time since the administration of therapy.

With the above boundary and initial conditions, we note that by standard meth-
ods, it is possible to prove existence and uniqueness of the solutions for (1) (see
[17, 18]) and to show that the solutions all remain bounded and non-negative for
t > 0.

2.1. Varying viral production, P (a). The functional form of the viral produc-
tion kernel, P (a), is unknown and remains to be determined experimentally [19].
We consider two possible kernels that capture features of the biology. Both have
a maximum production rate, Pmax, because cellular resources will ultimately limit
how rapidly virions can be produced, but they differ in how they approach the
maximum. First, we study a delayed exponential function

P (a) =

{

Pmax(1 − e−β(a−a1)) if a ≥ a1,

0 else
(3)

where β controls how rapidly the saturation level, Pmax, is reached. We have also
included a term a1 to represent a delay in viral production; that is, it takes time
a1 after initial infection for the first viral particles to be produced. This kernel
can mimic either a very rapid increase to maximal production or a slow increase to
maximal production depending on the value of β (Fig. 1a).

Second, we consider a Hill type function, which also allows for saturation of viral
production,

P (a) = Pmax
an

Kn
a + an

, (4)

where Ka is the half-saturation level and n is a constant called the Hill coefficient.
This function allows for quick growth to a maximal level, depending upon the value
of Ka, but can also approximate the delayed effect seen in (3) for large values of
n (see Fig. 1b). Hence, both functions can account for the fact that immediately
after infection a number of biological processes need to occur before the first virus
particle is produced. The Hill function does this without an explicit delay, although
one can be added (Fig. 1c).

To contrast the current approach with previous ones, note that in the earliest
models of within-host HIV dynamics [8, 20] the viral production rate was chosen
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Figure 1. Virion production kernel, P (a), showing the ability to
represent rapid production or delayed production depending on the
chosen parameters. Here Pmax = 850 virions/day. (a): P (a) given
by (3) with a1 = 0, except where noted. (b): P (a) given by (4)
with Ka = 1. (c): The two functions mimic one another for certain
parameters.

as a constant; that is, P (a) = constant. Later, delay models were introduced that
chose P (a) = 0 for a ≤ a1 and P (a) = constant for a > a1, where a1 was either
fixed or given by a probability distribution [11, 12, 13]. Thus, the current model is a
generalization of both the fixed production rate and delay models. Recent work [15,
16] examines the possibility that the viral production rate may evolve to maximize
viral production. Also, it is possible that δ is a function of the virion production
rate P (a) or of total virion production to date. These ideas are considered elsewhere
[15, 16].

2.2. Varying the death rate, δ(a). Another feature of our model is that the
death rate, δ(a), of infected cells can vary with the age of an infected cell. The
correct form for this age-dependent death rate distribution is unknown but ex-
periments that examine changes in nef and rev gene expression [21, 22] allow
conjecture about its behavior. Once a target cell becomes infected, it takes some
time before viral epitopes begin to appear on the cell surface, leaving initial cell
death to be dominated by background, or natural death. Further, for a strong CTL
(cytotoxic T cell) response to occur, large numbers of epitopes must be expressed
on the cell surface [23]. Thus, an infected cell is expected to become susceptible
to CTL-mediated killing only at some as yet unknown age of infection. Hence, for
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δ(a) we will consider an increasing function, where the rate of cell death increases
with the age of infection (Fig. 2).

In addition, we assume a minimal infection time is needed before epitopes are
expressed and the cell becomes susceptible to cell-mediated killing or for enough
viral products to be made that the cell may die from the infection itself; that is,
from viral cytopathic effects. One possible choice is

δ(a) =

{

δ0 a < a2,

δ0 + δm(1 − e−γ(a−a2)) a ≥ a2,
(5)

where δ0 + δm is the maximal death rate, γ controls the time to saturation and a2

is the delay between infection and the onset of cell-mediated killing. The term δ0

represents a background death rate.
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Figure 2. Death rate of productively infected T cells with δ(a)
given by (5) for γ = 0.1, 0.5, and 1.0. The background death rate
δ0 = 0.5 day−1. The additional death rate due to both cytotoxic
T cells and viral cytopathic effects, reaches a maximum of δm = 1
day−1, at a rate determined by the parameter.

Changes in γ can mimic killing of infected cells by CD8+ T cells because a higher
γ could relate to a more rapid expression of viral peptides on the cell surface and
hence create a better recognition by CD8+ T cells. The model can also account
for a weak CD8+ T cell response by allowing γ to remain very low, so that most
of the early killing would be due to viral cytopathic effects and background death.
However, as the model stands, we cannot isolate the killing effects by CD8+ T cells
or other methods of infected cell loss, and so we only consider a combination of all
effects.

2.3. Burst size. The total number of viral particles produced over the lifespan
of an infected cell is called the burst size, N . For cells with age-dependent viral
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production and death rates we have

N ≡

∫

∞

0

P (a)σ(a)da, (6)

where

σ(a) = e−
∫

a

0
δ(s)ds (7)

is the probability an infected cell survives to age a.

3. Model Analysis. To determine the steady states of the age-structured model
we set the time derivatives in (1) equal to zero and solve

s − dT − kV T = 0,

dT ⋆

da
= −δ(a)T ⋆,

∫

∞

0

P (a)T ⋆(a)da = cV,

(8)

with

T ⋆(0) = kVssTss. (9)

It is easily seen that one steady state is the trivial or noninfected steady state

(Tss, T
⋆(a)ss, Vss) = (

s

d
, 0, 0). (10)

There is also a non-trivial or infected steady state, which we will denote with
overbars. Solving the second equation in (8) with initial condition (9), we get

T̄ ⋆(a) = T ⋆(0)σ(a) = kV̄ T̄ σ(a) ≡ f(a). (11)

Equations (8) also imply

T̄ =
s

d + kV̄
, (12)

and

V̄ =
1

c

∫

∞

0

P (a)T̄ ⋆(a)da. (13)

Substituting (11) and (12) into (13) and rearranging yields

V̄ =
s

c

∫

∞

0

P (a)σ(a)da −
d

k
=

s

c
N −

d

k
, (14)

and substituting (14) into (12), we obtain

T̄ =
c

kN
, (15)

with

T̄ ⋆(a) = (s −
dc

kN
)σ(a). (16)

Lemma 1. The infected steady state exists if and only if

(i)N > dc/(sk), (17)

or for the case when P (a) is given by (3) and δ(a) = δ = constant

(ii)c < Pmax
(β + δ − δeβa1)ks

δ(β + δ)d
, (18)
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or written another way, highlighting the infectivity rate k, if and only if

k >
δ(β + δ)dc

Pmax(β + δ − δeβa1)s
. (19)

If condition (ii) is violated, then the only steady state is the noninfected steady state.

Proof of (i) At the infected steady state

V̄ =
s

c

∫

∞

0

P (a)σ(a)da −
d

k
. (20)

The existence of a biologically realistic infected state, requires V̄ to be greater then
zero. Hence s

c

∫

∞

0
P (a)σ(a)da > d

k
, or equivalently N ≡

∫

∞

0
P (a)σ(a)da > dc/(sk).

Further, if this inequality is obeyed then T̄ ⋆(a) from (16) is positive.

Proof of (ii) Calculating N =
∫

∞

0
P (a)σ(a)da for P (a) given by (3), and δ =

δ(a) = constant, gives

N =

∫

∞

0

P (a)σ(a)da =
Pmax(β + δ − δeβa1)

δ(β + δ)
, (21)

which when substituted into (17) yields (18). In addition,

T̄ =
cδ(δ + β)

k(β + δ − δeβa1)Pmax
,

V̄ =
s(β + δ − δeβa1)Pmax

cδ(δ + β)
−

d

k
,

(22)

and

T̄ ⋆(a) =

[

s −
dcδ(δ + β)

k(β + δ − δeβa1)Pmax

]

e−δa. (23)

When the inequality (18) is violated, V̄ < 0, since

c > Pmax
(β + δ − δeβa1)ks

δ(β + δ)d
. (24)

Hence from the proof of (i) we see this to be violated and the only non-negative
steady state is the noninfected steady state. Equation (24) can easily be re-written
to get (19). QED

The condition for the existence of an infected state state can also be seen by
direct examination of the model equations. In the standard ordinary differential
equation model of HIV-1 infection presented in [6, 7, 24] a transcritical bifurcation
occurs at c = πkT0/δ, where π is the constant virion production rate and T0 = s/d.
The viral production rate can also be written as π = Nδ, where N is the burst
size. Thus, if viral clearance is faster then viral production; that is, c > πkT0/δ, or
NkT0, then the noninfected steady state is stable [7]. Alternatively, if c < NkT0,
then the infected steady state is stable [7].

In our model with age-structure, we find the same bifurcation. At steady state,
viral clearance equals viral production, or from (15)

c = kT̄

∫

∞

0

P (a)σ(a)da, (25)
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which is equivalent to c = NkT̄ . If we use (3) for P (a), we get

c = Pmax
kT̄ (β + δ − δeβa1)

δ(β + δ)
. (26)

If we use T̄ = T0 = s/d, so that the infected and uninfected steady states merge,
and rearrange (26) we get

k =
δ(β + δ)dc

Pmax(β + δ − δeβa1)s
, (27)

which is the bifurcation point corresponding to (19) (see Fig. 3).

The bifurcation point at N = dc
sk

is equivalent to the classical formulation in-
volving R0, the basic reproductive number. Nowak and May [6] show that for the
standard model without age-structure, R0 = kπs

δdc
. With π = Nδ, R0 = kNs

dc
; thus

R0 > 1, the criterion for a stable infected steady state (17), is equivalent to N > dc
sk

.

If we consider the Hill function (4) for the production kernel, it is possible to
determine a bifurcation analytically for the case n = 1 and δ(a) = δ. In this case
we can integrate (6) to get

∫

∞

0

P (a)e−δada =
Pmax

δ
[1 − KaδeKaδE1(Kaδ)] (28)

where E1(a) is the exponential integral; that is, E1(a) =
∫

∞

1
e−as

s
ds. From (17) the

bifurcation occurs at c = Nks
d

. If we set Ka = 1 and δ = 0.4, day−1for example, we

find the bifurcation occurs at c = 1.45Pmax
ks
d

(see Fig. 3). For other values for the
Hill coefficient, n, we would have to resort to numerical methods to determine the
bifurcation point. Note from Fig. 3 that we find almost identical results using the
two different production kernels, (3) and (4).

3.1. Stability results. The following Lemma shows how the stability of a steady
state of a model with age-structure can be determined directly from the application
of the Jacobian matrix about the steady state [4]. Jacobian matrices are used
to determine the characteristic equations for finite dimensional systems, but we
will show that they can be used for our age-structured model after we apply the
method of characteristics. This process will require a Laplace transform of each
age-dependent term.

We present this generalization of the standard Jacobian matrix method for de-
termining stability in full detail here. This derivation using the Laplace transform
is essentially the same as presented in earlier examinations of age-structured mod-
els by Pruess [26], Thieme and Castillo-Chavez [1], Webb [18], and Hethcote [27].
However, we believe that expressing the criteria in matrix terms even for this sim-
ple model is instructive and worthwhile, since the framework will extend directly
to stability analysis of more complex age-structured models.

Lemma 2. The general characteristic equation for (1) and (2), assuming (3)
and δ(a) being constant can be directly determined by evaluating the Jacobian
matrix at each steady state where we find the bifurcation for stability to be c =

Pmax
(β+δ−δeβa1 )ks

δ(β+δ)d .
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Figure 3. Numerical solutions of (1) with P (a) given by: (a) a
delayed exponential function, (3) or (b) a Hill type function (4),
both with a1 = 0 days. Pmax = 1019 virions/cell-day (a) or Pmax =
1880 virions/cell-day (b), β = 10 day−1, s = 0.13 cells/(µl-day),
Ka = 1 day, n = 1, d = 0.013 day−1, k = .46x10−6 ml/(virion-
day), δ(a) = δ = 0.4 day−1, amax = 10 days, and T (0) = 10/µl and
V (0) = 0.02 /ml, as in [25]. Other parameters come from Stafford
et al. [24]. With these parameters, the bifurcation value for c is
11.27 day−1(see (26)) (a) and c = 12.54 day−1(b). For c = 10
day−1, the infected state is stable and Vss = 3569/ml (a) and
7177 (b). The bottom picture shows the transcritical bifurcation
diagram for the case when (3) is used for the production kernal.
The bifurcation diagram is similar for the case where (4) is used.
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Proof of Lemma 2: Consider the model (1) with the defined boundary (2) and
initial conditions. First, note that the general solution for T ⋆ can be immediately
determined using characteristics as

T ⋆(a, t) =

{

σ(a)B(t − a) if t ≥ a,

σ(a)T ⋆
0 (a − t) if t < a,

(29)

where T ⋆
0 (a− t) = T ⋆(a, 0), is the initial value and B(t−a) is an unknown function

that is determined by the boundary condition T ⋆(0, t) = kV (t)T (t). From (29) with
a = 0, we find B(t) = kV (t)T (t). Hence the trajectories of T ⋆ are controlled by the
value of δ and the concentration of V since V is given in the boundary condition.
If V = 0 (that is, a noninfected steady state), then the only valid solution of (29) is
T ⋆ ≡ 0. Only for V > 0 can we find a nonzero solution of T ⋆ and hence an infected
steady state.

Substituting (29) into (1), we obtain

dT

dt
= s − dT − kV T,

dV

dt
=

∫ t

0

P (a)σ(a)B(t − a)da − cV + F1(t),

B(t) = kV (t)T (t),

(30)

where F1(t) =
∫

∞

t
P (a)σ(a)T ⋆

0 (a − t)da and since we assume P (a) ≤ Pmax < ∞,

lim
t→∞

F1(t) = 0. (31)

Equation (30) has two differential equations and one algebraic equation because
the dynamics of T ⋆ are controlled by the boundary condition. Once the stability
of (30) is found, it then gives the stability of (1).

We can write (30) as

dT

dt
= s − dT − kV T,

dV

dt
= K1 ∗ B − cV,

B(t) = kV (t)T (t),

(32)

where K1(a) = P (a)σ(a) and

K1 ∗ B =

∫

∞

0

K1(a)B(t − a)da, (33)

is the convolution, in a, of the functions K1 and B. The solutions of

s − dTss − kVssTss = 0,

K1 ∗ Bss − cVss = 0,

kVssTss − Bss = 0,

(34)
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give us the points about which to linearize. Linearizing about any given fixed point
(T̄ , V̄ , B̄) = (T − Tss, V − Vss, B − Bss) yields

dT̄

dt
= −dT̄ − kTssV̄ − kVssT̄ ,

dV̄

dt
=

∫

∞

0

K1(a)B̄(t − a)da − cV̄ ,

B̄ = kTssV̄ + kVssT̄ .

(35)

Taking the Laplace transform of (35) we get, denoting transforms with hats,

(λ + d + kVss)T̂ (λ) + T (0) = −kTssV̂ (λ),

(λ + c)V̂ (λ) + V (0) =

∫

∞

0

∫

∞

0

K1(a)B(t − a)dae−λtdt,

B̂(λ) = kTssV̂ (λ) + kVssT̂ (λ),

(36)

where λ is the Laplace variable. We begin the solution of these equations by rewrit-
ing the double integral. Using Fubini’s theorem we switch the order of integration
and set α = t − a to obtain

∫

∞

0

K1(a)

∫

∞

−a

B(α)e−λ(α+a)dαda. (37)

Since B = 0 for α < 0 (that is, t < a) the lower bound of integration of the interior
integral can be set to zero without loss of generality and we get

∫

∞

0

K1(a)e−aλ

(∫

∞

0

B(α)e−λαdα

)

da. (38)

The resulting interior integral
∫

∞

0
B(α)e−λαdα is the Laplace transform of B, i.e.,

B̂(λ). Substituting this result back in gives
∫

∞

0
K1(a)e−aλB̂(λ)da and since the

limits of integration are in a we can factor out the B(λ),

B̂(λ)

∫

∞

0

K1(a)e−aλda ≡ B̂(λ)K̂1(λ). (39)

Equations (36) now form a simple linear system. We can solve the equations using
Cramer’s rule to find

T =
fT (T0, V0, λ)

det(A(λ))
,

V =
fV (T0, V0, λ)

det(A(λ))
,

B =
fB(T0, V0, λ)

det(A(λ))
,

(40)

for some functions fT , fV and fB , and using the Jacobian matrix for (32) with a
Laplace transform for the production kernel,

A =





−d − kVss − λ −kTss 0

0 −c − λ K̂1(λ)
kVss kTss −1



 . (41)

The absence of the λ in the (3, 3) element of the matrix is a consequence of the
equation for B(t) being algebraic (not a differential equation) [27]. On taking the
inverse Laplace transform, the growth rates λ are found at the poles of the solutions
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(40). After checking that there are no common factors in fT , fV or fB , these poles
are at the zeroes of det(A), that is, the solutions of

(λ + d + kVss)(λ + c − kTssK̂1(λ)) + k2TssVssK̂1(λ) = 0. (42)

We now determine the characteristic equation for our model using the Jacobian
matrix and show that it is the same as (42). Evaluating the Jacobian matrix at the
noninfected steady state [(Tss, Vss, Bss) = (s/d, 0, 0)] gives

det





−d − λ −k s
d

0

0 −c − λ K̂1(λ)
0 ks

d
−1



 = 0, (43)

with the characteristic equation

(λ + d)(λ + c − k
s

d
K̂1(λ)) = 0. (44)

Note that for Vss = 0 and Tss = s/d, (44) is the same as (42). The roots of this
equation are λ1 = −d, and solutions of

λ + c − K̂1(λ)k
s

d
= 0, (45)

where if we use

P (a) =

{

Pmax(1 − e−β(a−a1)) if a ≥ a1,

0 else,
(46)

and set σ(a) = e−δa we find the roots to be solutions of

λ + c − kTssPmax
(λ + β + δ) − (λ + δ)eβa1

(λ + δ)(λ + δ + β)
= 0. (47)

Rearranging, we get

λ3 + (β + 2δ + c)λ2 + (βδ + δ2 + 2cδ + cβ − kTssPmax + kTssPmaxe
βa1)λ

+cδβ + cδ2
− kTssPmax(β + δ(1 − eβa1)) = 0,

(48)

where we immediately see that one condition for stability, provided by the Routh-
Hurwitz condition, is that the constant term of the polynomial must be positive;
that is, cδβ + cδ2 − kTssPmax(β + δ(1− eβa1)) > 0, which is satisfied by Lemma 1.
Since the coefficient of λ2 is also positive, the final condition for stability is

(β + 2δ + c)(βδ + δ2 + 2cδ + cβ − kTssPmax + kTssPmaxe
βa1)

−cδβ − cδ2 + kTssPmax(β + δ(1 − eβa1)) > 0.
(49)

We can rewrite (49) to get

(β + 2δ + c)(βδ + δ2 + 2cδ + cβ) + kTssPmax(β + δ(1 − eβa1))

−(β + 2δ + c)kTssPmax(1 − eβa1) − cδ(β + δ) > 0.
(50)

Notice the two terms with the negatives in front. The first with the exponential is
always positive as 1−eβa1 ≤ 0 and the second, cδ(β+δ), is included in the product of
the first positive term and hence will cancel out. Hence, the noninfected steady state

is locally stable, provided (24) is satisfied (that is, if c − Pmax
(β+δ−δeβa1 )ks

δ(β+δ)d > 0),

and therefore, the infected steady state does not exist.
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To study the infected steady state, when it exists, we linearize (30) about the
fixed point [(T̄ , V̄ , B̄) = ( c

kN
, s

c
N −

d
k
, s− dc

kN
)]. This yields the eigenvalue equation

det





−d − kV̄ − λ −kT̄ 0

0 −c − λ K̂1(λ)
−kV̄ kT̄ −1



 = 0. (51)

Solving gives

λ2 + (
ks

c
N + c −

cK̂1(λ)

N
)λ + ksN −

cdK̂1(λ)

N
= 0. (52)

If we now consider the case where P (a) is defined by (3), δ(a) = δ and a1 = 0
we have

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (53)

where

a1 = β + 2δ + c +
skN

c
,

a2 = (β + δ)δ + (c +
skN

c
)δ + (c +

kkN

c
)(β + δ) + skN,

a3 = (c +
skN

c
)δ(β + δ) + skNδ + skN(β + δ) −

cPmaxβ

N
,

a4 = skNδ(β + δ) −
cPmaxβd

N
.

(54)

The conditions for stability are obtained by employing the Routh-Hurwitz condi-
tions for a fourth order polynomial, as a1 > 0, a4 > 0, B1 ≡ a1a2 − a3 > 0, and
C1 ≡ B1a3 − a1a4 > 0. By inspection we see that a1 > 0 for all parameter values.
Lemma 1 guarantees that a4 > 0, provided the infected steady state exists. Using
Maple, one can multiply out B1 and see that all the negative terms cancel out and
hence B1 > 0 for all parameters. The final condition for stability is C1 > 0 and
again using Maple one can find that all the negative terms can be matched with
a positive term that is bigger in magnitude, given Lemma 1. Hence, the infected
steady state is stable provided the condition in Lemma 1 is satisfied; that is,

c < Pmax
(β + δ − δeβa1)ks

δ(β + δ)d
(55)

or in our case with a1 = 0,

c < Pmax
βks

δ(β + δ)d
. (56)

QED

4. Numerical results. The continuous age-structured model, (1), was solved nu-
merically by using MatLab 6.0 (Mathworks, Natick MA, USA). We first converted
the partial differential equation in (1) to a series of coupled ordinary differential
equations by discretizing the age classes of T ⋆ into an array of equally sized age
classes between 0 and amax. Here amax does not necessarily correspond to the max-
imum age of infection of a cell, but instead corresponds to the age at which the
production rate has closely approached the asymptotic value Pmax and, therefore, is
essentially constant with age. Thus, the age class amax includes all cells whose age
of infection was greater than or equal to amax and was chosen such that the viral
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production rate in the last class satisfies P (amax) = (1 − 10−6)Pmax. The flux of
individuals between age classes was calculated using a fourth-order finite difference
method [28], except near the boundary for the penultimate age class amax−1. At
this upper age boundary we calculated the flux from age class amax−1 into amax

using a first order upwind finite difference method. Using this method near the
upper age boundary damped any instabilities introduced by defining the T ⋆ den-
sity in age class amax as

∫

∞

amax

T ⋆(a, t)da. We verified that the relative error for

this approach was less than 10−5 for special cases where the equilibrium densities
are known analytically. The set of coupled ordinary differential equations and the
corresponding equations for T (t) and V (t) were numerically solved using a variable
order Adams-Bashforth-Moulton method with a variable time step to maintain the
temporal error below 10−6.

4.1. Primary infection. As a test case to study the effects of age-structure we
examine the kinetics of primary HIV infection. After an individual is infected with
HIV-1, the viral load measured in plasma typically rises to a peak within a few
weeks after infection and then declines, reaching a quasi-steady state or set-point
value. The time to the peak, the amplitude of the peak, and the set-point viral
load are all important characteristics of primary infection that any model needs
to match. Data on the kinetics of primary infection for ten patients are given in
Stafford et al. [24], as well as fits and parameter estimates based on the standard
ordinary differential equation model of HIV infection. This corresponds to the
non-age-structured version of model (1). We reasoned that if the virion production
rate varied with infected cell age then the time to reach the peak viral load and
the subsequent dynamics might be affected. Thus, we compared predictions of our
model to those in Stafford et al. [24]. The initial conditions we used were T (0) = T0,
T ⋆(0, a) = 0 and V (0) = V0, where T0 and V0 were chosen to be the same as in [24].

In Stafford et al. [24], the rate of viral production, denoted π in that paper,
was held constant and independent of infected cell age. In their model the total
number of virions produced per infected cell during its lifetime, the burst size N ,
is given by π/δ, where 1/δ is the average infected cell lifetime. To ensure that
the effects we see with an age-structured model are not due to choosing a different
burst size, we held N constant in all of our comparisons between models. In Fig. 4
we compare the results in Stafford et al. to simulations with the age-structured
model for two representative patients. For the age-structured model we choose
P (a) given by (3), with δ(a) = δ, and a1 = 0, so that N = Pmaxβ

δ(δ+β) . Notice, in Fig. 4,

that if viral production ramps up slowly to Pmax then the time to peak viral load
is delayed compared to the standard model with constant production. For both
patients examined, the delay is about ten days when the characteristic time for the
viral production to increase is one day; that is, β = 1 day−1. However, when β is
increased to 10 day−1so that viral production ramp up rapidly (see Fig. 1a) and
Pmax is decreased so as to keep N constant, a closer fit to the dynamics seen in
Stafford et al. [24] is obtained.

If we use P (a) given by (4), we obtain similar results to those for P (a) given by
(3). However, in this case the closest fit to the solutions in Stafford et al. is obtained
when we increase Pmax and decrease n (Fig. 5). In this limit the production rate is
approximately constant (Fig. 1).
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Figure 4. Numerical solutions of (1) using the parameters from
Stafford et al. [24], with P (a) given by (3), with a1 = 0 and Pmax

and β constrained so that N = Pmaxβ
δ(δ+β) had the value estimated

in Stafford [24]. Top panel (Patient 1): The value of s = 0.13
cells/(µl-day) was chosen from the steady state conditions, given
that d = 0.013 day−1, k = .46x10−6 ml/(virus-day), δ(a) = δ = 0.4
day−1, amax = 10 days and T (0) = 10/µl, and V (0) = 10−6/ml.
The solid line corresponds to the case studied in Stafford et al.
with constant virion production, π = Nδ. The other two lines
show results for the age dependent model. Notice, when β = 1/day
and hence ramping up to full viral production is slow, the time to
reach the peak viral load is delayed. However, for β = 10/day the
solution approximates the constant production case and as β → ∞

the solutions coexist (not shown). Bottom panel (Patient 8): We
used s = 0.085 cells/(µl-day) to get the steady state conditions
given by d = 0.0085 day−1, k = .66x10−6 ml/(virus-day), δ(a) =
δ = 0.17 day−1, amax = 10 days and T (0) = 10 µl and V (0) =
10−6/ml.

Numerical simulations of the model with a varying infected cell death rate, where
δ(a) is given by (5), also show that the time to the viral peak and the overall level
of virus at times before the steady state is established are sensitive to the choice of
δ(a) (Fig. 6).

If we allow the production rate to vary with age of infection we find that differ-
ent production schedules and different burst sizes can give similar viral dynamics
(Fig. 7), suggesting that it may be difficult or impossible to deduce P (a) from data
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with the estimated value of N in Stafford et al. [24]. The solid line
is the result given in [24]. The remaining parameters are given in
Fig. 4(top).
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Figure 6. Numerical solutions of (1) with P (a) given by (3), with
a1 = 0 and δ(a) given by (5), with a2 = 0. We compared the results
of allowing for a constant δ, δ(a) = 0.4 (solid line) to those with a
death rate that varied with age of cellular infection, with δ0 = 0.05
day−1and δm = 0.35 day−1. We examined cases where there was a
slow growth to maximal killing (γ = 0.2 day−1) and a faster growth
to maximal killing (γ = 1 day−1). The remaining parameters were
Pmax = 1019 virions/cell-day, β = 10 day−1, s = 0.13 cells/day,
d = 0.013 day−1, k = .46x10−6 ml/(virion-day), amax = 15 days,
T (0) = 10/µl, and V (0) = 0.02/ml.
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on virus concentration changes with time. However, when we consider these pro-
duction rate changes coupled with a varying death rate, the virus dynamics curves
that were nearly identical become less similar; for example the time to achieve the
viral peak changes (Fig. 7).

0 20 40 60 80 100 120
10

−10

10
−5

10
0

10
5

10
10

days

H
IV

−1
 R

N
A

/m
l δ = δ(a)

β = 5, P
max

 = 940

β = 0.8, P
max

 = 1880

0 20 40 60 80 100 120
10

−10

10
−5

10
0

10
5

10
10

days

H
IV

−1
 R

N
A

/m
l δ = constant

β = 5, P
max

 = 940

β = 0.8, P
max

 = 1880

Figure 7. Numerical solutions of (1) with P (a) given by (3), with
a1 = 0 days, δ(a) = constant = .40, and N = 3133 when β = 0.8
and Pmax = 1880, or N = 2176 when β = 5 and Pmax = 940 (top
figure) or δ(a) given by (5) with δ0 = 0.05 day−1, δm = .35 day−1,
γ = 0.5, and a2 = 0. The top figure shows that similar timing and
concentrations at viral peaks can be obtained with greatly different
maximum production rates, burst sizes, and rates of gearing up
production γ. The bottom figure shows that with the timing of
viral production as in the top panel but an age varying death rate
that the viral concentration profiles no longer are similar. All other
parameters are the same as in Fig. 6.

4.2. Sensitivity of model to initial values. One of the difficulties of estimating
parameters that characterize primary infection, with this model as well as with
non-age-structured models [29, 25, 24], is the model sensitivity to initial data. For
later stages of infection this sensitivity is less severe. There is no way to measure
the amount of virus that initially infects a patient, and in general the exact time of
infection is unknown. Also, the initial density of target cells is generally unknown,
especially if one considers target cells to be the activated fraction of CD4+ T cells,
as is done in the Stafford et al. model [24]. Hence, we studied changes in both T0

and V0 to determine how they affect the time to peak viral load (Fig. 8).

We found that for low initial values of target cells (that is, T0 = 10 cells/µl the
value used in Stafford et al. [24]), changes in the initial viral load led to a greater
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to T0 = 20/µl) can mimic changes resulting from varying the Hill
coefficient.
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Figure 9. Numerical solutions of (1) with P (a) given by (3), for
a1 = 0 days, Pmax = 850, β = 1.0, s = 0.5 cells/day, d = 0.01
day−1, k = .65x10−6 µ/ (virion-day), δ(a) = δ = 0.39 day−1,
c = 3.0 day−1, amax = 10 days and T (0) = 10 or 100/ µl and
V (0) = 10−6 or 0.02/ml. The initial values for V0 were the ones
used in [24] and [25], respectively.
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Figure 10. Numerical solutions of (1) with parameters the same
as in Fig. 9 but showing the effects of changes in β and the initial
viral loads with T (0) = 10/µl (top) and T (0) = 100/µl (bottom).

variation in the time to the viral peak than if we chose a higher value of T (0); say,
T0 = 100 cells/µl (Fig. 9).

More importantly, we found that it is difficult to distinguish between the effects
of changes in initial values and the effects of changes in P (a) (Fig. 10). This
sensitivity to changes in initial values reduces the significance of parameter fitting
to determine P (a). It also implies that one can not use the time to peak viral load to
distinguish between different functional forms of P (a). Instead, direct experimental
measurements of P (a) are needed.

5. Conclusions. We developed a model of HIV-1 infection that accounts for vari-
ations in the death rate of productively infected T cells and viral production that
are due to the age of the cellular infection. Our model considers time, t ≥ 0 to
be the time since a person has become infected with HIV-1 and a time or age of
infection, a, which keeps track of the time between a T cell becoming infected and
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its ultimate death. The age of cellular infection plays a key role in determining
the rate of viral particle production per productively infected T cell and how long
the productively infected T cell lives. This is the first account of the behavior of
HIV models with viral production and death rates that vary as functions of age of
infection.

We provided a detailed local stability analysis of the fixed points of this system
and found as in the non-age structured models that there were two steady states, an
uninfected one and an infected steady state, with the infected steady state arising
by a transcritical bifurcation.

We considered two separate functions for the production of viral particles as
function of the age of cellular infection. In our model the average burst size, N , is
given by

∫

∞

0
P (a)σ(a)da. Not surprisingly, our model was able to simulate dramat-

ically different scenarios for viral production while providing similar overall total
viral loads. However, we did find in certain scenarios that variations in the burst
size and production schedule (see Fig. 7) did not affect the timing or concentration
of viral peaks, while in other scenarios it did (see Fig. 4).

When we examined the effects of a varying death rate, δ(a), we found that
predicted viral loads, and in particular the time to viral peak and the amplitude of
the damped oscillations that occur before reaching steady state, were sensitive to
the choice of δ(a). However, since other effects such as the initial viral load or the
initial number of target cells also affect the time to peak, it would be difficult to
identify the age-dependent death rate from an examination of viral load data alone.

While we currently do not have any experimental justification for the chosen
functions, P (a) and δ(a), our work lays the foundation for future studies of HIV
pathogenesis that we hope will be, in part, directed to the determination of these
functions. In other publications [15, 16], we have asked whether natural selection in
the host can determine P (a) and have posed the question of finding the P (a) that
maximized the burst size under conditions where the death rate of infected cells,
δ(a), may be influenced by the viral production rate P (a). The model presented
here allows consideration both of primary infection and of the establishment of
chronic infection. An important application will be the consideration of the effects
of drug therapy on chronically infected patients. Much work has already been done
in this area using either ordinary differential equation or delay differential equation
models [8, 11, 30, 31, 32]. Whether the use of age-structured models will change
the interpretations of drug-perturbation experiments remains to be determined.
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